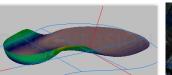


Parc Floral 10 mars 2018

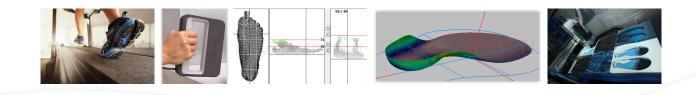
Utilisation des accéléromètres tri-dimensionnels dans le bilan podologique : une aide au "diagnostic"

Thierry Van Meerhaeghe Kinésithérapeute Podologue

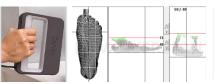


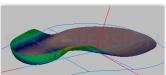
Pourquoi réaliser un bilan de la marche?

Pourquoi quantifier la marche lors d'un bilan podologique ?

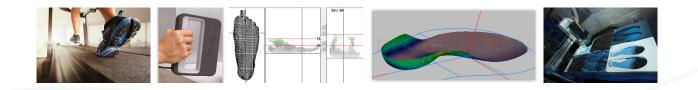


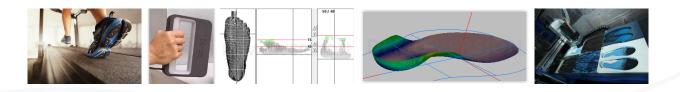
- 1° Pour comprendre le pourquoi des douleurs de mon patient
 - => OK! Mais Comment?
- 2° Pour obtenir des informations afin de réaliser des orthèses
 - => OK! Mais quelles informations?
- 3° Pour pouvoir déterminer la normalité (ou non) de mon patient ?
 - => Vaste sujet.....



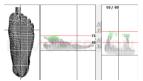


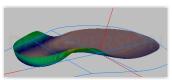
De quoi disposons-nous pour ce faire?

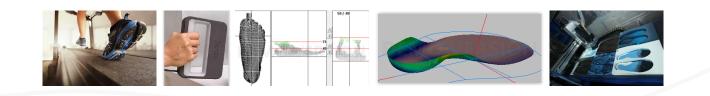


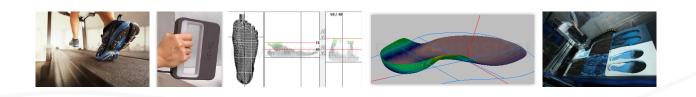

- 1° Bilan biométrique ?
 - => Cela nous renseigne sur le "potentiel", pas le fonctionnel
 - => Ex. : être hypermobile veut-il dire être instable ???
- 2° Plate-forme
- => Utile mais souvent mal utilisé
- => Quelles sont les conditions d'utilisation ???
- 3° Tapis roulant et vidéo-goniométrie ?
 - => Parlons-en....

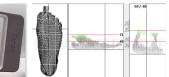
A priori, comme clinicien, nos ne pouvons pas.....

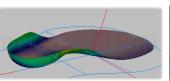


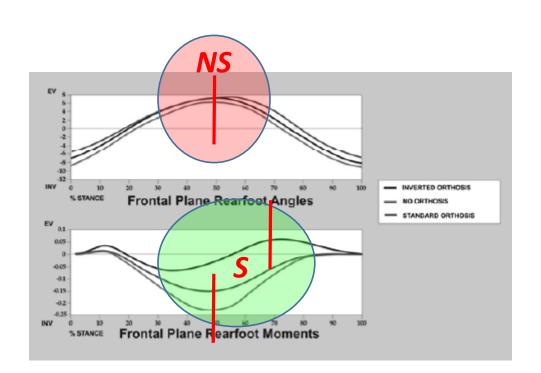


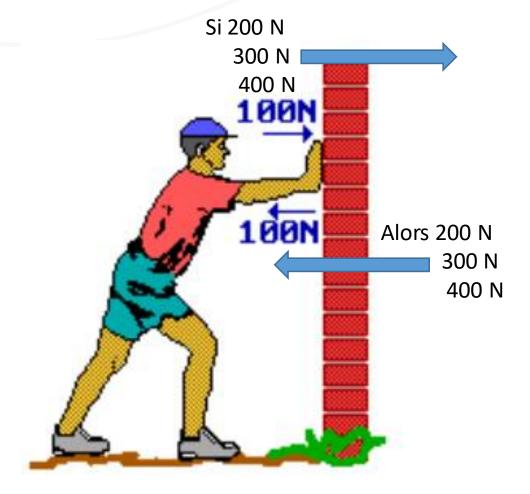


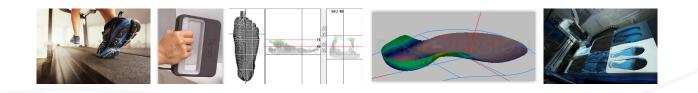



Mais nous savons aussi que:

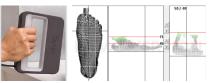

- => Une orthèse ne modifie PAS:
 - Un angle
 - Une position
- => Une orthèse modifie :
 - La cinétique
 - Les forces en "jeu"
 - Les moments moteurs (ratio pro/supi)
 - Le timing des phases

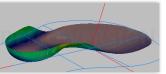




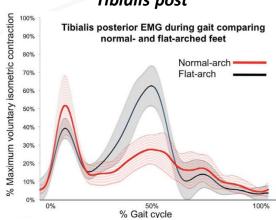

Aie, Aie, Aie.....

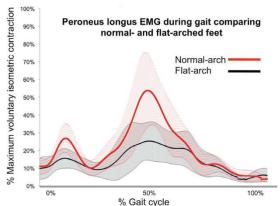
Williams DS, McClay-Davis I, Baitch SP: Effect of inverted orthoses on lower extremity mechanics in runners. Med Sci Sports Exerc, 335: 2060-2068, 2003





Comment donc pouvons-nous analyser les "forces"?



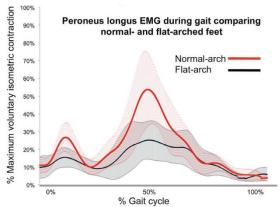


Tibialis post

Peroneus longus

Electrodes de surface Vitesse stabilisée sur tapis roulant Enregistrement de 30" Travail musculaire "global" (µV)

Rouge: MI G (TS / TA / TP / LPL)


Bleu: MI D (idem)

Condition 4:

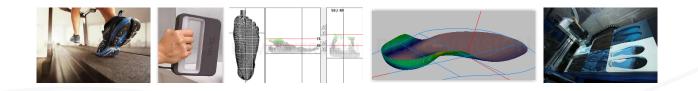
Travail en diminution Symétrie +++

Conditions:

1: PN 2: old orthotics 3: CCA 4: CC B

EMG Effects of Orthoses

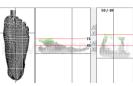
Orthoses significantly altered EMG activity of biceps femoris and anterior tibial muscles during running

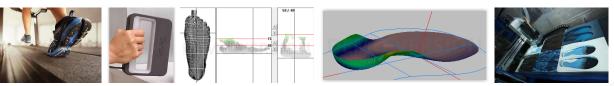

Nawoczenski DA, Ludewig PM: Electromyographic effects of foot orthotics on selected lower extremity muscles during running. Arch Phys Med Rehab, 80:540-544, 1999.

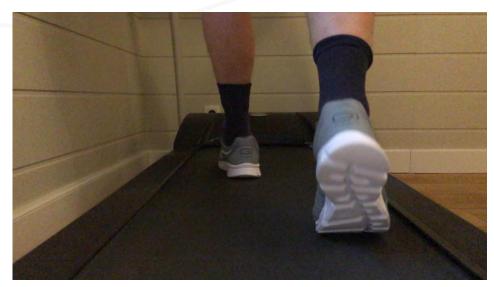
Orthoses significantly altered duration of anterior tibial muscle activity during walking

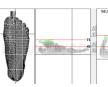
Tomaro J, Burdett RG: The effects of foot orthotics on the EMG activity of selected leg muscles during gait. J Ortho Sp Phys Ther, 18:532-536, 1993.

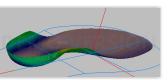
Trop long **Trop cher**




Comment donc pouvons-nous analyser le "timing"?





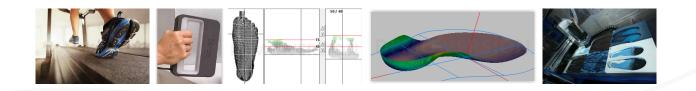


www.gespodo.com

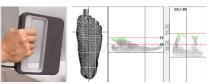
369

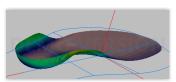
Peer-reviewed publications (source: pubmed)

Jump to a category:



- Mariani et al, 2013: publication validant les différentes phases temporelless de la marche, mesurées à l'aide de notre système sur des patients sains ainsi que patients avec arthrose de la chevile pre- et post- opératoire vs un gold-standard de semelles instrumentées (Pedar)
- Mariani et al, 2010: un papier scientifique sur l'importance de l'évaluation de nouveaux paramètres de marche, tel que l'élévation du pied, en tant qu'outil d'évaluation d'interventions médicales ou de rééducation
- Mariani et al, 2012: une publication validant les paramètres d'élévation du pied de notre système vs le gold-standard de système caméra gold-standard (Vicon)
- Mariani et al, 2013: une publication validant les paramètres spatio-temporels de la marche de notre système vs le gold-standard de système caméra gold-standard (Vicon) sur des patients atteint de la maladie de Parkinson
- Dadashi et al, 2013: un article scientifique proposant des valeurs normative grâce à des mesures avec notre système sur 1400 sujets âgés

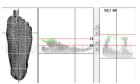


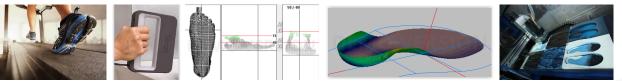


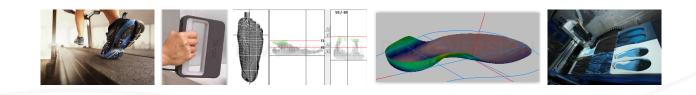
Pourquoi accéléromètres tri-dimensionnels?

- 1° Nous avons les trois dimensions de l'espace
- 2° Simple

- => Qqs minutes suffisent.....
- => Données utilisables directement (diagnostic et Test / Re-test)

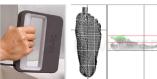

3° Validé

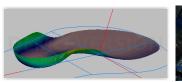

- => Efface les "pas" d'accélération et de frein
- => Reconnait les pas "tournants" et les élimine
- => Marche, course, outdoor,...



GENERAL					<u> </u>	→	•==	=> •		4
Parameter:	Cycle duration		Cadence		Stride length		Stride velocity		Turning angle	
unit	seco	onds	steps/minute		meters		meters/s		degree	
side	left	right	left	right	left	right	left	right	left	right
Mean	0.939	0.940	127.83	127.74	1.281	1.266	1.370	1.350	0.5	-0.3
Median	0.942	0.945	127.32	126.98	1.265	1.256	1.353	1.356	0.5	-0.5
SD	0.026	0.027	3.55	3.62	0.055	0.058	0.084	0.078	1.6	1.5
IQR	0.025	0.040	3.38	5.43	0.071	0.091	0.084	0.114	2.4	2.1
Min	0.880	0.890	120.60	121.21	1.149	1.146	1.163	1.190	-3.4	-3.2
Max	0.995	0.990	136.36	134.83	1.475	1.386	1.647	1.521	5.3	4.4
Ratio	0.999	1.001	1.00	1.00	1.012	0.989	1.015	0.986	-2.0	-0.5
CV[%]	2.753	2.819	2.77	2.83	4.257	4.542	6.167	5.760		

TEMPORAL	MA	Y	2		17,	Z	77	\geq		Í	4	
Parameter:	Sta	nce	Sw	ing	Loa	ding	Foot	-Flat	Pus	hing	Double	support
unit	% of cycl	e duration	% of gait cycle		% of stance		% of stance		% of stance		% of cycle duration	
side	left	right	left	right	left	right	left	right	left	right	left	right
Mean	60.83	61.75	39.17	38.25	17.98	21.32	50.04	47.00	31.98	31.68	22.59	22.59
Median	60.98	61.85	39.02	38.15	18.34	20.96	49.79	46.90	31.67	31.93	22.34	22.34
SD	1.38	2.19	1.38	2.19	1.68	1.94	1.46	1.77	1.25	1.53	2.88	2.88
IQR	2.03	4.13	2.03	4.13	2.05	2.41	2.14	1.96	1.71	2.31	4.61	4.61
Min	57.53	57.14	36.08	35.23	14.02	17.09	46.85	41.88	29.66	28.07	16.29	16.29
Max	63.92	64.77	42.47	42.86	21.37	27.35	53.21	50.89	36.28	34.51	28.57	28.57
Ratio	0.99	1.02	1.02	0.98	0.84	1.19	1.06	0.94	1.01	0.99		
CV[%]	2.28	3.55	3.53	5.73	9.34	9.10	2.92	3.78	3.91	4.82	12.73	12.73





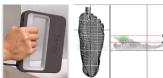
Utilisation pratique en cabinet

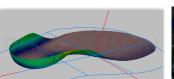
Mode diagnostic.....

=> Nous donne des informations :

- Directes et interprétables
- Phases du pas
- Asymétrie G/D

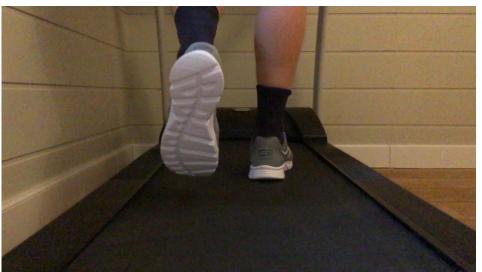
- ...


Attaque - Appui - Propulsion (PD)


8.91 % 65.18 % 25.91 %

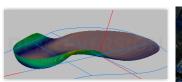
25 % 40 % 35 % "Norme" ????

Mode Test / Re-test


=> Nous donne des informations :

- Directes et interprétables
- Phases du pas
- Asymétrie G/D

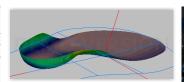
- ...


Attaque	-	Appui -	Propulsion (PD)
8.91 %		65.18 %	25.91 %
9.29 %		54.56 %	36.15 %
25 %		40 %	<i>35</i> %

Une orthèse modifie:

Le timing de la marche Le ratio de pro/supi

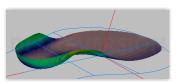
Accéléromètres 3-dim:

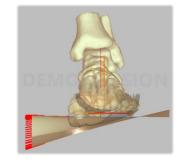

Mode diagnostic
Mode Test / Re-test

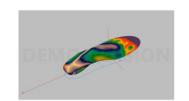
Comparatif PG-PD (a-symétrie ?)
Comparatif PG - PG (effet de l'orthèse)
Comparatif PG - PG (effet de la chaussure)

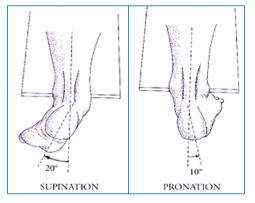
Comprendre comment cela fonctionne, c'est mieux !!!

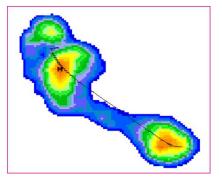
Pour VOUS, pour vos PATIENTS, pour notre METIER

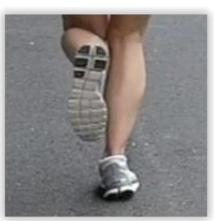







L'expert, c'est vous !!!





www.gespodo.com